
Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

341

Analysis of Lightweight Cryptographic Algorithms for Internet of

Things

Renie Mathewsa, Deepa V Joseb

a Department of Computer Science, CHRIST (Deemed to be University), Bangalore 560029, India
b Department of Computer Science, CHRIST (Deemed to be University), Bangalore 560029, India

* Renie Mathews. Tel.: 09495258903.

E-mail address: renie.mathews@res.christuniversity.in

ABSTRACT

The exponential advancements in the electronics field resulted in the development of small sensors with the

capability to collect information inreal-time, without any human intervention. This is revolutionizing human life and

also leads to many security challenges that cannot be ignored. The information collected through the massive

internet of things, is analyzed to make intelligent decisions for the users. But the data accumulated can also include

sensitive data that needs to be protected from detrimental attacks to maintain the privacy of the user and the integrity

of the data. Thus encryption/decryption becomes a critical aspect in the Internet of Things applications; to avoid

compromising the data from any intentional/unintentional attacks on the data. As the devices are highly resource-

constrained, lightweight cryptographic algorithms that use less power, less memory, and have lesser computation are

preferred to the traditional cryptographic methods. This paper analyzes the various symmetric ciphers in hardware

architecture in terms of parameters like gate area, throughput, efficiency, memory, and complexity of the algorithm.

Keywords—Cryptography, Lightweight Algorithms, Internet of Things, Sensors, Stream Ciphers, Block Ciphers

I. INTRODUCTION

Universal computing, also called pervasive computing as envisioned by Mark Weiser (Patel & Patel, 2016) [26] has

already come a long way in the ever-growing field of computer technology. Devices with computational capabilities

are embedded in a variety of objects and are spread throughout the real-world environment [16]. These devices

which are connected over the Internet have the capability to interact or communicate among themselves. In the

present world relying heavily on these pervasive devices which perform useful tasks making our day-to-day life

effortless has become the new normal.

 The concept of the Internet of Things (IoT) which was conceived by Kevin Ashton (Kramp et al., 2013) [20] has

extended the realm of Ubiquitous computing to a new plane altogether. It can be defined as the interactions between

the digital world and the physical environment which has devices like sensors, microprocessors, etc (Bhuvaneswari

& Porkodi, 2014) [5]. The devices connected to the web are increasing considerably in the current scenario. The

quantity of information available is unimaginable as there is a rich profusion of such devices or things that are

connected to the web. Composing context-based (Sethi & Sarangi, 2017) [30] analysis of the multitude of data with

little or no human intervention makes the IoT devices like smart devices. IoT is not just a technology but an

amalgamation of many technologies enabling us to connect anything, anytime, anywhere for anything (Ali. et al.,

2015) [1].

Electronic copy available at: https://ssrn.com/abstract=3742134

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

342

1.1 Importance of IoT

The development of small sensors, the inevitable component of an IoT network, having the capability to collect

information in real-time is a milestone in the massive adoption of this technology. The applications of IoT can be

seen in a wide variety of aspects from smartphones to smart homes, industry to education, agriculture to satellite

communication, and so on. Remote controlling the home front like controlling the temperature of the house,

refrigerator, etc to the desired level to the burglar alarms systems is a common reality. The agriculture sector is made

smart by using the data analysis reports on soil, water, and weather from the data collected from the rain gauges,

temperature sensors, etc, thereby improving the yields through better and healthy crops.

Gadgets, sometimes implants, can be used as health indicators to track and control the patients based on the

information received, helping doctors to take preventive measures. This can also be life-saving on many occasions.

Various IoT applications are also actively used in patients in assisted living to record their vitals and to ensure a

better well being. This in turn relieves the tension of caretakers and improves the quality of life. The usage of IoT in

surveillance applications is also quite visible in all areas. Real-time data gathering helps e-commerce vendors to

maintain the logistics for the inventory and automatically create orders when the goods in the inventory diminish.

The analysis of the data which is abundant can be used for getting intelligent insights into any business and to

predict future needs by studying the trends; thus increasing productivity and making viable business decisions. All

the above-mentioned applications were just in our imagination a decade before and now have become a reality.

Hence this technology enables machine to machine and machine to human communications possible within no time,

also capable of handling enormous big data easily to provide useful insights, and have become an inexorable

companion of modern lifestyle.

1.2 Limitations of IoT Devices

Due to the variety of applications that IoT facilitates, exponential growth in the usage of IoT devices is prevalent

now. It is expected that every user should be aware of the limitations of it to eliminate the chances of becoming

victim of the inherent hidden vulnerabilities. There are some limitations to the IoT devices which have to be

addressed as every device a person now has, is becoming a smart device. The number of devices in the physical

environment will keep rising as more IoT applications are developed for the users. The IoT environment should be

able to accommodate all the basic functionalities even with the constant growth of the Internet without affecting the

performance of the system (Miorandi et al., 2012) [24]. Many of the IoT devices are expected to be small in size

owing to the requirement to be embedded in different devices or in sensitive areas where human intervention is risky

or even impossible. This obviously creates restrictions in the various resources like memory and processing

capabilities which foils the usage of traditional routing and security mechanisms used in communication networks

[5]. In turn, this issue demanded the development of new methods of communication protocols, security

mechanisms, etc specifically for IoT. Besides all, the lack of a common standardized architecture makes

communication cumbersome in IoT networks as various vendors follow different protocols and architectures.

 IoT environment is largely a heterogeneous environment owing to the collection of different ‘things’, possibly of

different nature in all aspects. The heterogeneity is visible in software, hardware, and network platforms. It is

expected that there should be methods that these “things” would be able to collaborate their functionalities

seamlessly. The heterogeneity of the devices is closely associated with the network, syntactic, and semantic

interoperability challenges (Hossain et al., 2015) [17]. Protocols and standards should be developed for smooth

communication between the different networks to hide the intricacies of different networks at the interface itself.

Electronic copy available at: https://ssrn.com/abstract=3742134

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

343

Similarly, there would be issues due to the syntactic differences of the data structure formats used by the

communicating devices, which will also have to be addressed. Efforts should be taken to combat the semantic

incompatibility as the devices may use different languages and the meaning of the data should not be lost in the

process. The data accumulated by the IoT devices fall in the category of ‘Big Data’. The large volume of data will

be stored in the centralized cloud or servers. Algorithms have to be developed to draw useful insights from these

data ensuring data security. Sometimes the data collected may be incomplete or lost in transit. In such situations, it is

needed to extrapolate the lost data. Sophisticated algorithms have to be developed to extract context-based

information for applications.

II. SECURITY CHALLENGES IN IoT

Security challenges in IoT can be looked into different perspectives of its layered structure say; hardware and

software levels, based on networking and application levels, etc. Any IoT application results in gathering enormous

quantities of data. In the majority of these applications, the data collected seems to be quite private and sensitive like

medical data, personal data, etc which need to be protected from outside theft. If proper preventive measures and

security mechanisms are not taken for the same, it can result in data leakage/inside/outside data theft through various

active and passive attacks which may not be noticed in the initial stages. Several risks, threats, attacks, and

vulnerabilities are associated with IoT. A major challenge to be addressed is to provide awareness for IoT users to

adopt relevant security mechanisms in their IoT network. Since vendor-specific devices are used commonly, regular

patch-ups and middleware updates may not happen; and even in some cases, the vendor itself may not exist after a

few years. Many of the devices are plug and play which can be easily infused or taken away from the network. In

such scenarios, attackers can easily infiltrate and gain control over the network and perform the intended malicious

activities resulting in the slowing down of the resources and the network or complete loss of data. A common attack

that is faced by IoT networks is the various versions of the Denial of Service. The Mirai Botnet which occurred in

October 2016 is one such kind. Several such attacks happen every moment despite having security mechanisms and

intrusion detection systems. Novel attacks and threats get generated and the only solution to withstand this is to be

literate about the issue and adopt possible countermeasures.

The fundamental security requirements for any information should also be guaranteed for IoT systems for effective

throughput and performance. Thus methods are needed to protect the privacy of the sensitive data and also preserve

the integrity of the data. Data confidentiality has to be ensured by allowing only authorized entities to access and

modify the data. In IoT both users and objects access information. Hence access control and object authentication

mechanisms should deny unauthorized access to information (Buchanan et al., 2017). The information is encrypted

to maintain the confidentiality of the data avoiding passive attacks on the messages sent between the devices. Data

Integrity is essentially the reliability of data. The massive amounts of data moving between nodes in the IoT network

should be protected from passive and active attacks by adversaries. This can be ensured by encryption algorithms

where only the intended user can decrypt the information. Efficient key management schemes must be made

available when exchanging keys between the users which do not reveal the key. Client privacy is a great concern as

a lot of personal information is collected in the process of analyzing the data. Personal information should be

accessed only by authorized users. Data authentication is the process of preventing access to information by

unauthorized users. Security in IoT should be dealt with utmost importance; otherwise, it can tamper with

individuals/organization's resources, data, and routine.

2.1 Requirement of Lightweight Security Algorithms

The IoT devices are highly resource-constrained in terms of size, memory and energy backup. Because of this,

the traditionally sound and highly secure cryptographic algorithms cannot be used in IoTs as these complex

Electronic copy available at: https://ssrn.com/abstract=3742134

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

344

algorithms will consume far more memory while implementing the algorithm [2]. The power consumption of the

computationally intensive algorithms is high for the devices running on battery. The above factors resolve this issue

and provide security which was essential for the development of lightweight cryptographic algorithms with the main

feature of less computational overhead [8]. So lightweight cryptographic algorithms are chosen to provide security

in the resource limited devices like IoT devices. These algorithms use less memory, power and implementation size

with high throughput (Wheeler & Needham, 1995). But the algorithms are less secure than the conventional

cryptographic methods when traded with the cost of implementing the ciphers in the tiny devices like the RFID tags,

sensors.

III. LITERATURE REVIEW

The lightweight cryptographic algorithms can be either symmetric or asymmetric [18]. In symmetric algorithms, the

plain text is encrypted and decrypted using a public key [10]. These are either stream ciphers or block ciphers [11].

Asymmetric ciphers have two keys such as public key and private key. The symmetric ciphers are the commonly

used ciphers for lightweight solutions as they are easier to implement [12].

 Tiny Encryption Algorithm (TEA) with 64 rounds and 128-bit key size was proposed in 1994 (Wheeler &

Needham, 1995) [35]. To overcome the weakness of the related key attacks and it is a bad hash function the authors

of TEA, Wheeler, and Needham again modified it and proposed XTEA (extended TEA) in 1997 with a complex key

scheduling method [19] [28]. But the Gate Equivalent (GE) exceeded the desired gate area which was to be between

1000 and 3000. The Advanced Encryption Standard (AES) proposed the highly secure round key technique in 1998,

which makes it difficult to break the encrypted message. Though AES cannot be categorized as LWC, it is

considered as the basis for most of the lightweight methods as it was standardized by NIST in the year 2001

(Rothke, 2007) [27]. The mCrypton block cipher (Lim & Korkishko, 2005) [22] similar to AES was designed for

low-cost IoT devices like the RFID tags and sensors in 2005 has 3 key lengths possible – 64, 96, and 128 but was

found to be prone to relate key rectangle attacks. Unlike the SPN and Feistel networks used in the previous ciphers

mentioned, HIGHT (Scott et al., 2006) [29] is an ARX (Addition Rotation XOR) cipher whose design principle does

not include S- boxes and hence is easy to implement on the hardware but the cipher had some inherent security

issues. Bogdanov et al. designed the famous PRESENT in the year 2007 cipher which was an ultra-lightweight

block cipher with the smallest hardware footprint with only 1000 gates (Bogdanov et al., 2007) [6]. The major

security concern is that the keystream is not random enough, letting the attacker to easily decipher theciphertext.

GRAIN and TRIVIUM are the finalists in the eStream project for the lightweight stream cipher category having less

gate count. GRAIN (Hell et al., 2007) [15] has a keystream of 80 bits and uses less memory and power

consumption. TRIVIUM (De Cannière, 2006) [11] has better hardware implementation and is inspired from block

ciphers. DESL and DESXL ciphers were introduced by George Leander et al, which are lightweight adaptations of

the traditional DES cipher (Leander et al., 2007) [21]. ICEBERG was an involutive cipher which could change keys

with every clock cycle, but the number of gates required was 5800 (Cheng & Heys, 2008) [9]. The major difference

is that these versions of DES use only one S-box instead of the 8 S-boxes used in the original, which is repeated for

achieving the functionality. The 64 bit block cipher with 80/128 bit keys, TWINE proposed by Suzaki et al. is based

on the generalized Feistel Structure (GFS) and can be implemented both in software and hardware (Suzaki et al.,

2011) [34].

SIMON and SPECK algorithms designed by NSA [3], are block ciphers with the Feistel structure and support

several key sizes, block sizes, and round numbers(Beaulieu et al., 2015). Both have hardware and software

implementations but SIMON performs well when implemented in hardware and SPECK is found to be better in

software implementation. A stream cipher analysis and the different design methods are conducted in (Manifavas et

al., 2015) [23], which shows the ciphers are easy to implement, as streams of bits are XORed with the keystream.

Electronic copy available at: https://ssrn.com/abstract=3742134

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

345

The simplified key scheduling used is found to be not immune enough to the Man-in-the-middle attack. A cipher

that is resistant to almost all attacks known called LEA was developed in the year 2013 by the developers of

HIGHT. It is a 128-bit block cipher that has varying key sizes (Singh et al., 2017) [32]. Elliptic Curve Cryptography

(ECC) is the most attractive cipher among the public key or asymmetric ciphers and is best for confidentiality and

non-repudiation (Bhardwaj et al., 2017) [4]. In (Hatzivasilis et al., 2018) [14] explained the review of the

lightweight block ciphers has been done on various parameters. The block cipher works on blocks of data chunks.

Still, ECC and different versions of ECC seem to be more embraced.

IV. LIGHTWEIGHT CRYPTOGRAPHIC ALGORITHMS - A COMPARISON

The basic and essential parameters for comparing the lightweight algorithms are Key length or Key size, Block

Size, and Number of rounds used by the algorithm.

 The key length is usually measured in the number of bits and it determines the security level that can be

achieved by the cipher. As the length of the key decreases, the key related attacks increases.AES is a highly secure

cipher with little known attacks like Biclique cryptanalysis. Hence the key size of the ciphers should be preferably

somewhere near the key length of AES (128 bits). Keeping with that condition most of the lightweight ciphers are

designed with a key size of 128 except for ciphers like PRESENT which has a key length of 80 [7]. But as the key

size becomes smaller, the information becomes more prone to attacks as the key can be detected with little effort.

The key length is considered in conjunction with the block size and the number of rounds. In each round, the plain

text is changed using a new key, and hence with more rounds, the ciphertext is more secure.

Some of the most popular ciphers taken in this study are Tiny Encryption Algorithm(TEA), Extended the Tiny

Encryption Algorithm (XTEA), Advanced Encryption Standard (AES), ICEBERG, mCrypton, HIGHT, PRESENT,

TRIVIUM, and GRAIN. TEA recorded in C (Wheeler & Needham, 1995) could be implemented easily in other

languages effectively to encrypt the information. TEA takes 64 block size data and a 128-bit length key and

produces independent output. It also uses a magic number, which is of the golden ratio, and is stored in the variable

delta which is as represented in equation (1).

   31
215 delta

 (Wheeler & Needham, 1995) (1)

A different value of delta is used in the algorithm making each the round of the cipher different from each other

making the cipher more secure.

Since the algorithm is very small it can be implemented in hardware also just as it can be implemented in software

using the desired language choice. The problem with the algorithm is that there are 3 equivalent keys thus reducing

the effective number of keys from 128 to 126 making it vulnerable to attacks. The simple key scheduling made a

slide attack probable if it were not for the changing delta values (Shepherd, 2007) [31]. The extended version of

TEA, XTEA, was developed to overcome the flaws found during the cryptanalysis of TEA. The 64-bit block is

divided into 2 halves and Feistel network routines of 32 rounds are applied to each half. In XTEA instead of the

usual XOR operation, addition is done during the encryption process and subtraction is carried out during the

decryption process. All operations that are done are modulo 232 in XTEA. A permutation function and a function for

generating the subkey are applied to the two halves as given in equation 2.

  ,54
nnn

RRRnfunctionPermutatio  
 (2)

Electronic copy available at: https://ssrn.com/abstract=3742134

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

346

 where ⊕ is a bitwise XOR operation and 4
n

R is the logical left shifting of the right half by 4 bits and

5
n

R is logical right shifting by 5 bit (San & At, 2012) . The subkey is generated by the function

)(sumksum  where)(sumk selects one block out of the four 32 bit blocks depending on the bit value of bits

1 and 0 or bits 12 and 11 of sum (Kaps, 2008). The permutation function and the subkey function are then XOR-ed

and is applied to the two halves to get the final values (Kaps, 2008).

In AES, The 128 bit block of data is considered as 16 bytes which are arranged in a 4 X 4 matrixes. The number of

rounds varies depending on the key sizes as shown in Table 1. Each of the rounds then uses a separate 128-bit key

which is obtained from the original key. A reverse method of the above encryption process is done for the

decryption process (Muhammad Abdullah, 2017) [25]. These individual rounds consist of various variable which are

mentioned below.

a) ByteSubstitution: This gives a 4 X 4 matrix obtained from the lookup table.

b) ShiftRows: In this where each row is shifted to the left and the resultant matrix has the same 16 bytes but

rearranged due to shifting to each other.

c) MixColumns: It gives a new matrix of entirely different 16 bytes where a mathematical function is applied to the

bytes of each column giving new values in its place.

d) AddRoundKey: This matrix is now considered as 128-bit and is XORed with the 128-bit round key. The process

is repeated until the cipher text is obtained in the last round.

The involution block cipher is normally used in hardware implementations and has repetitive rounds which are

identical depending on the key. The encryption and the decryption differ only in the key scheduling. Non- Linearity

in the cipher implementation is achieved by the substitution boxes and the permutation method. The permutation

method applies 8 permutations in parallel where these are bit permutations on 8-bit blocks. This is viewed as 8

identical 8 X 8 S boxes. The key addition is done by a bitwise XOR with the key vector along with matrix

multiplications to achieve the linear layer (Standaert et al., 2004)[33]. This is the case of ICEBERG. The mCrypton

cipher algorithm uses a 4 X 4 nibble matrix of 4 bits. The substitution is achieved by nibble wise substitutions on

this matrix. The function operates on the nibble word on the ith row or column as in equation (3), where (a0, a1, a2,

a3) is the nibble word.

          

3322110
,,, aSaSaSaSa

iiiii 


 (3)

 A bit permutation is carried out column-wise using be masking nibbles. A transposition is done by moving the

nibble at the ith row and the jth column to the jth row and the ith column. Then the round key is XORed to the matrix.

Each round of the encryption process consists of the substitution, permutation, transposition, and the addition of the

key to the 4 X 4 matrix (Lim & Korkishko, 2005).

In HIGHT the plain text is transformed as input on which the first round function is applied by using the key

whitening mechanism of 8 bytes. The whitening keys are obtained from the key scheduling process from some of

the bytes of the key and the subkeys that are generated using the addition and XOR operations, which is also used in

the encryption process. In the other rounds the bits are shifted and XOR-ed and in the final round again the key

whitening mechanism is applied (Hong et al., 2006). In the PRESENT algorithm, 31 rounds are used to generate the

round key K1 to K31 (Bogdanov et al., 2007) using substitution and permutation operations and the K32 is used in the

last round to get the ciphertext using XOR with the result from the previous round(B et al., 2017). The cipher is

made lightweight by using a single S box which is repeated 16 times. In TRIVIUM the stream cipher generates a

long keystream of bits from the master key and it also uses an initialization vector. The incoming stream of data is

XOR-ed with the keystream updating the IV(Christophe & Preneel, 2006). This process is done for encryption. It is

Electronic copy available at: https://ssrn.com/abstract=3742134

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

347

again created and XOR-ed with the ciphertext for the decryption process. According to GRAIN the key is initialized

by setting the NFLSR with the key bit values and the LFSR is set with the value from the 64 bit IV and the rest of

the bits are set to 1. The algorithm is clocked where the output bits are fed back and the result is then XORed with

that of LFSR and NLFSR (Diedrich et al., 2016). The block size (BS), key size (KS), and the number of rounds® for

these popular ciphers are given in Table 1.

TABLE 1 – COMPARISON BASED ON PARAMETERS (BS, KS, R)

Algorithm

Block

size

Key

Size

Rounds

TEA

64

128

64

XTEA 64 128 64

AES

128

128

192

256

10

12

16

ICEBERG 64 128 16

mCrypton 64 128 16

HIGHT 64 128 13

PRESENT 64 80 32

TRIVIUM 1 80 -

GRAIN 1 80 -

Other criteria should also be considered by the lightweight ciphers for various devices like smaller hardware

implementations which are proportional to the number of gates used (GE), Energy consumed, Power Consumption,

Latency, Throughput, Hardware Efficiency, the software implementation measured in terms of the memory used for

storing the cipher, and resistance to possible attacks on security.

The hardware implementation of any cipher considers the GE to measure the area and the complexity of the cipher

which translates to the cost of implementing the same. To be considered as lightweight the GE should be between

1000 and 3000 the AES cipher though very efficient exceeds the boundary of 3000 GE and hence cannot be

considered for resource-constrained devices. PRESENT is the best cipher suited for ultra-low constrained devices

with 1000gates. The RFID tags being very small, the circuit area in the chips are very limited. Even though the AES

algorithm consumes less power, manufacturers prefer ciphers like PRESENT for devices like RFID tags. These are

also suited for applications for agriculture where many sensors are needed to collect the data and the data need not

be protected.

Electronic copy available at: https://ssrn.com/abstract=3742134

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

348

 PRESENT and AES use the SPN (Substitution Permutation network). The difference between them is in the

number of S-Boxes used. The AES used 8X 8 bit S-boxes whereas PRESENT was made compact and less complex

by reducing the S-Boxes to 4 X 4 bit S-boxes. Power consumption is another parameter that is closely related to

GE or the circuit area. The majority of the IoT devices are battery charged or rely on the server to which it is

connected for the power requirements, methods which consume less power are preferred [1]. The power used by

AES is 6.12 µW, HIGHT is 5.47 µW, mCrypton is 4.66 µW, DESL is 1.93 µW whereas PRESENT significantly

uses less power of 1.80 µW. Thus, the ciphers which use very little power are ideal for devices that are installed for

collecting data in places like agricultural farms or remote locations where there is no power.

 The number of clock cycles needed for encryption/decryption is referred to as latency. Though the PRESENT

algorithm has a higher latency than ICEBERG and mCrypton, the energy consumption of the PRESENT is lower

than the other ciphers. The efficiency of the cipher when implemented in hardware increases when the throughput of

the encryption/decryption process increases and the complexity of the algorithm which is the computational work

needed for the process decreases. This is higher in HIGHT than XTEA, PRESENT. The various parameters taken

for comparison are GE,Power used(P),Latency(L), throughput(T) and H/W Efficient(H/W E) and is shown in Table

2.

TABLE 2 – COMPARISON BASED ON PARAMETERS (GE, P, L, T, H/W E)

 Algorithm GE
Power

used
Latency

Through

put

H/W

Efficiency

TEA 3872 7 512 6.25 1.61

XTEA 2636 4.74 705 9. 08 3.44

AES 3400 6.12 1032 12. 4 3.46

ICEBERG 3872 - - - -

mCrypton 2594 4.66 190 33.51 12.91

HIGHT 3038 5.47 34 188 61.67

DESL 1848 - - - -

PRESENT 1000 1.80 561 11.4 11.40

TRIVIUM 2599 - - 100 -

GRAIN 1294 - - 100 -

 The function of a cryptographic algorithm is to secure the information from hackers. Cryptanalysis is conducted

on the ciphers to see how far they can resist any attack and tries to withstand the external interferences. An

intentional attacker will try to decode the secret key and find the key from the information by carefully analyzing the

variations in the power consumption during the encryption process etc. Here, some of the popular lightweight

ciphers are analyzed based on the cryptanalysis.

Electronic copy available at: https://ssrn.com/abstract=3742134

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

349

 Whether in hardware or software, PRESENT is one of the popular lightweight ciphers. Ciphers like SIMON,

SPECK, and SEA are better in terms of small code size and low RAM usage than PRESENT. Also, they belong to

ciphers with less than 1000 GE category. The ciphers have a weakness to various attacks and hence PRESENT is

preferred to them. The security analysis of the PRESENT cipher has proved that it is vulnerable to some attacks,

particularly multiple fault injections (Breier & He, 2016) and the secret key could be recovered using differential

fault analysis. HIGHT uses a masking technique to overcome the Differential Power Analysis attack (DPA) (Gong

et al., 2016) [13]. The same technique used with LEA did not reduce the processing speed but was found that the

speed increased 2.7 times than HIGHT. Although LEA consumes more area than HIGHT, it can be implemented in

objects which are not restricted by area, ensuring better security against DPA.

 Among the variants of DES (DESL and DESXL) DESL is robust against many attacks. As it uses a single S-Box

which is repeated 8 times introducing the non- linearity nature of the S-boxes .DESL is found to be resistant to linear

and differential cryptanalysis and the David Murphy attacks (Leander et al., 2007). The Stream Cipher GRAIN

provides high security with better hardware implementation and is well suited for RFID tags. The speed of the

cipher can be increased at the cost of the hardware. GRAIN is resistant to most attacks like the algebraic attacks and

fault attack (Hell et al., 2007). The 80-bit stream cipher TRIVIUM though very simple in hardware implementation

is open to differential fault analysis attacks (Hosseinzadeh, 2016).

V. CONCLUSION AND FUTURE SCOPE

Over the years, the world is witnessing accelerated growth in the number of new IoT devices. Human beings rely on

these indispensable devices to complement their life. With more information load in the network, security becomes a

formidable issue that has to be addressed. Various lightweight cryptographic algorithms have been developed for

these highly resource-limited devices. There is no single lightweight cipher that satisfies all the criteria, giving the

best performance in hardware or software and also giving the best security possible for the information

communicated between the devices. Depending on the requirement of the embedded applications, sometimes

performance will be traded for cost if the device is ultra-limited in size. In certain other situations, if the data is very

sensitive, then the security will be paramount to the cost or performance. Thus the ciphers are chosen based on the

need of the applications. The development of a lightweight cryptographic algorithm suited for IoT applications

without any compromise in security aspects is the need of the hour to be focused on. This study highlights the

features of various lightweight symmetric ciphers suitable for different IoT applications.

REFERENCES

1. Ali., Z. H., Ali., H. A., & Badaway., M. M. (2015). Internet of Things (IoT): Definitions, Challenges and Recent Research Directions.
International Journal of Computer Applications, 128(1), 37–47. https://doi.org/10.5120/ijca2015906430

2. B, C., Kumar.V, K., & Shatharama Rai C. (2017). Comparative Study of cryptographic encryption algorithms. IOSR Journal of Electronics
and Communication Engineering, 12(03), 66–71. https://doi.org/10.9790/2834-1203026671

3. Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., & Wingers, L. (2015). The SIMON and SPECK lightweight block
cIPhers. Proceedings - Design Automation Conference, 2015-July. https://doi.org/10.1145/2744769.2747946

4. Bhardwaj, I., Kumar, A., & Bansal, M. (2017). A review on lightweight cryptography algorithms for data security and authentication in
IoTs. 4th IEEE International Conference on Signal Processing, Computing and Control, ISPCC 2017, 2017-Janua(October), 504–509.
https://doi.org/10.1109/ISPCC.2017.8269731

5. Bhuvaneswari, V., & Porkodi, R. (2014). The internet of things (IOT) applications and communication enabling technology standards: An
overview. Proceedings - 2014 International Conference on Intelligent Computing Applications, ICICA 2014, March, 324–329.
https://doi.org/10.1109/ICICA.2014.73

6. Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., & Poschmann, A. (2007). PRESENT : An Ultra-Lightweight Block Cipher. 450–466.

7. Breier, J., & He, W. (2016). Multiple Fault Attack on PRESENT with a Hardware Trojan Implementation in FPGA. Proceedings - 2015
International Workshop on Secure Internet of Things, SIoT 2015, 58–64. https://doi.org/10.1109/SIOT.2015.15

8. Buchanan, W. J., Li, S., & Asif, R. (2017). Lightweight cryptography methods. Journal of Cyber Security Technology, 1(3–4), 187–201.
https://doi.org/10.1080/23742917.2017.1384917

9. Cheng, H., & Heys, H. M. (2008). Compact ASIC implementation of the ICEBERG block cipher with concurrent error detection.

Electronic copy available at: https://ssrn.com/abstract=3742134

https://doi.org/10.5120/ijca2015906430

Second International Conference on IoT, Social, Mobile, Analytics & Cloud in
Computational Vision & Bio-Engineering (ISMAC-CVB 2020)

350

Proceedings - IEEE International Symposium on Circuits and Systems, 2921–2924. https://doi.org/10.1109/ISCAS.2008.4542069

10. Christophe, D. C., & Preneel, B. (2006). Trivium Specifications. Trivium Specification, 507932.

11. De Cannière, C. (2006). TRIVIUM: A stream cipher construction inspired by block cipher design principles. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4176 LNCS, 171–186.
https://doi.org/10.1007/11836810_13

12. Diedrich, L., Jattke, P., Murati, L., Senker, M., & Wiesmaier, A. (2016). Comparison of Lightweight Stream Ciphers: MICKEY 2.0, WG-8,
Grain and Trivium. ftp://download.hrz.tu-darmstadt.de/pub/FB20/Dekanat/Publikationen/CDC/MickeyWg8GrainTrivium.pdf

13. Gong, W., Choi, P., Kim, B. C., & Kim, D. K. (2016). Analysis of masking effects on DPA countermeasure for lightweight cryptographic
algorithms. ISOCC 2015 - International SoC Design Conference: SoC for Internet of Everything (IoE), 315–316.
https://doi.org/10.1109/ISOCC.2015.7401714

14. Hatzivasilis, G., Fysarakis, K., Papaefstathiou, I., & Manifavas, C. (2018). A review of lightweight block ciphers. Journal of Cryptographic
Engineering, 8(2), 141–184. https://doi.org/10.1007/s13389-017-0160-y

15. Hell, M., Johansson, T., & Meier, W. (2007). Grain: A stream cipher for constrained environments. International Journal of Wireless and
Mobile Computing, 2(1), 86–93. https://doi.org/10.1504/IJWMC.2007.013798

16. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B. S., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., & Chee, S. (2006).
HIGHT: A new block cipher suitable for low-resource device. Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 4249 LNCS, 46–59. https://doi.org/10.1007/11894063_4

17. Hossain, M. M., Fotouhi, M., & Hasan, R. (2015). Towards an Analysis of Security Issues, Challenges, and Open Problems in the Internet
of Things. Proceedings - 2015 IEEE World Congress on Services, SERVICES 2015, June, 21–28.
https://doi.org/10.1109/SERVICES.2015.12

18. Hosseinzadeh, J. (2016). A Comprehensive Survey on Evaluation of Lightweight Symmetric Ciphers : Hardware and Software
Implementation. ACSIJ Advances in Computer Science, 5(4), 31–41.

19. Kaps, J. P. (2008). Chai-tea, cryptographic hardware implementations of xTEA. Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5365 LNCS, 363–375. https://doi.org/10.1007/978-3-540-
89754-5_28

20. Kramp, T., van Kranenburg, R., & Lange, S. (2013). Introduction to the Internet of Things. In Enabling Things to Talk: Designing IoT
Solutions with the IoT Architectural Reference Model (Issue March, pp. 1–10). https://doi.org/10.1007/978-3-642-40403-0

21. Leander, G., Paar, C., Poschmann, A., & Schramm, K. (2007). New lightweight des variants. Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4593 LNCS, 196–210.

22. Lim, C. H., & Korkishko, T. (2005). MCrypton - A lightweight block cipher for security of low-cost RFID tags and sensors. Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3786 LNCS, 243–
258.

23. Manifavas, C., Hatzivasilis, G., & Fysarakis, Konstantinos Papaefstathiou, Y. (2015). A survey of lightweight stream ciphers for embedded
systems. Security and Communication Networks, 9(December 2015), 1226–1246. https://doi.org/DOI: 10.1002/sec.1399

24. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc
Networks, 10(7), 1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016

25. Muhammad Abdullah, A. (2017). Advanced Encryption Standard (AES) Algorithm to Encrypt and Decrypt Data. Cryptography and
Network Security, June. https://www.researchgate.net/publication/317615794

26. Patel, K. K., & Patel, S. M. (2016). Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling Technologies, Application
& Future Challenges. International Journal of Engineering Science and Computing, 6(5), 1–10. https://doi.org/10.4010/2016.1482

27. Rothke, B. (2007). A look at the Advanced Encryption Standard (AES). Information Security Management Handbook, Sixth Edition, 1151–
1158. https://doi.org/10.1201/9781439833032.ch89

28. San, I., & At, N. (2012). Lightweight Hardware Architecture for XTEA Cryptographic Algorithm. Conference: The 2012 International
Conference on Embedded Systems and Intelligent Technology (ICESIT 2012).

29. Scott, M., Costigan, N., Abdulwahab, W., Goubin, L., & Matsui, M. (2006). Implementations of Cryptographic pairing on smart cards.
Cryptographic Hardware and Embedded Systems - CHES 2006, 4249(October), 134–147. https://doi.org/10.1007/11894063

30. Sethi, P., & Sarangi, S. R. (2017). Internet of Things: Architectures, Protocols, and Applications. Journal of Electrical and Computer
Engineering, 2017. https://doi.org/10.1155/2017/9324035

31. Shepherd, S. J. (2007). The Tiny Encryption Algorithm. Cryptologia, 31(3), 233–245. https://doi.org/10.1080/01611190601090606

32. Singh, S., Sharma, P. K., Moon, S. Y., & Park, J. H. (2017). Advanced lightweight encryption algorithms for IoT devices: survey,
challenges and solutions. Journal of Ambient Intelligence and Humanized Computing, 0(0), 1–18. https://doi.org/10.1007/s12652-017-0494-
4

33. Standaert, F. X., Piret, G., Rouvroy, G., Quisquater, J. J., & Legat, J. D. (2004). ICEBERG: An involutional cipher efficient for block
encryption in reconfigurable hardware. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 3017, 279–298. https://doi.org/10.1007/978-3-540-25937-4_18

34. Suzaki, T., Minematsu, K., Morioka, S., & Kobayashi, E. (2011). Twine: A lightweight, versatile block cipher. ECRYPT Workshop Pn
Lightweight Cryptography, LC11, 146–169. http://www.nec.co.jp/rd/media/code/research/images/twine_LC11.pdf

35. Wheeler, D. J., & Needham, R. M. (1995). Tea, a tiny encryption algorithm. Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1008, 363–366. https://doi.org/10.1007/3-540-60590-8_29

Electronic copy available at: https://ssrn.com/abstract=3742134

